The Exercises From Day 1

Monday, May 23, 2016

1. Let $H=R[t] /\left(t^{p}\right), \Delta(t)=t \otimes 1+1 \otimes t$. Show $P(H)=R t$.
2. Let $H=R[t] /\left(t^{p^{n}}\right), \Delta(t)=t \otimes 1+1 \otimes t$. Show $P(H)=R t+R t^{p}+\cdots+R t^{p^{n-1}}$.
3. Let $H=R\left[t_{1}, t_{2}, \ldots, t_{n}\right] /\left(t_{1}^{p}, t_{2}^{p}, \ldots, t_{n}^{p}\right), \Delta\left(t_{i}\right)=t_{i} \otimes 1+1 \otimes t_{i}$. Describe $P(H)$ as an R-module.
4. Let $H=R \Gamma, \Gamma$ an abelian p-group (or any finite group). Describe $P(H)$ as an R-module.
5. Let R be a domain, and $H=R C_{p}^{*}=\operatorname{Hom}_{R}\left(R C_{p}, R\right), C_{p}=\langle\sigma\rangle$.

Let

$$
t=\sum_{i=1}^{p-1} i \epsilon_{i}
$$

where $\epsilon_{i}\left(\sigma^{j}\right)=\delta_{i, j}$.
Show that $H=R[t] /\left(t^{p}-t\right)$, and $P(H)=R t$.
6. Prove a subset of the following:

1. $P(H) \cap R=0$.
2. $t, u \in P(H) \Rightarrow t+u \in P(H)$.
3. $t \in P(H), r \in R \Rightarrow r t \in P(H)$.
4. $P(H)$ is an R-submodule of H.
5. If R is a PID, then $P(H)$ is free over R.
6. $t \in P(H) \Rightarrow t^{p} \in P(H)$.
7. Show that $R C_{p}^{2}$ and $R C_{p^{2}}$ correspond to the same $R[F]$-module.
8. Show that the $R[F]$-module $(R[F])[X]$ does not correspond to any Hopf algebra H.
9. Let $H=R[t] /\left(t^{p^{2}}\right)$ with

$$
\Delta(t)=t \otimes 1+1 \otimes t+\sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t^{p i} \otimes t^{p(p-i)}
$$

This is a Hopf algebra (not the exercise). Show that H is not primitively generated (yes, the exercise).
10. Use Dieudonné modules to describe $\operatorname{End}\left(R C_{p}^{*}\right)$
11. Use Dieudonné modules to describe $\operatorname{Aut}\left(R C_{p}^{*}\right)$.
12. Use Dieudonné modules to describe $\operatorname{End}\left(R\left(C_{p} \times C_{p}\right)^{*}\right)$.
13. Use Dieudonné modules to describe $\operatorname{Aut}\left(R\left(C_{p} \times C_{p}\right)^{*}\right)$.
14. Does $\operatorname{Ext}_{R[F]}^{1}(M, M)$ give all the Hopf algebra extensions? Prove that the answer is no. Hint: consider $H=R[t] /\left(t^{p^{2}}\right)$ with

$$
\Delta(t)=t \otimes 1+1 \otimes t+\sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t^{p i} \otimes t^{p(p-i)} .
$$

This H is a Hopf algebra (still not the exercise).
15. Let H be a primitively generated R-Hopf algebra. Prove that $H \otimes_{R} S$ is a primitively generated S-Hopf algebra and that

$$
D_{*, S}\left(H \otimes_{R} S\right)=D_{*, R}(H) \otimes_{R} S .
$$

16. Show that $K[t] /\left(t^{p^{n}}\right)$ has no non-trivial L forms for any L.
17. Let $H=\mathbb{F}_{p}\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}-t_{2}, t_{2}^{p}-t_{1}\right)$. Determine, if possible, the smallest field L such that H and $\left(K C_{p^{2}}\right)^{*}$ are L-forms.
18. Let $M=D_{*}(H)$ for H a K-Hopf algebra of rank p^{n}. Suppose F acts freely on M. Show that H and $(K \Gamma)^{*}$ are $K^{\text {sep }}$-forms for some p-group Γ.
19. Let $M=D_{*}(H)$ for H a K-Hopf algebra of rank p^{n}. Suppose $F^{r} M=0$ for some $r>0$.

20. Find all Hopf orders in $H=K\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}, t_{2}^{p}\right)$.
21. Find all Hopf orders in $H=K\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}, t_{2}^{p}-t_{2}\right)$.
22. Find all Hopf orders in $H=\left(K C_{p}^{2}\right)^{*}$.
23. Determine which of the Hopf orders in $\left(K C_{p}^{2}\right)^{*}$ are monogenic.
24. Find all Hopf orders in $H=K\left[t_{1}, t_{2}\right] /\left(t_{1}^{p}-t_{2}, t_{2}^{p}-t_{1}\right)$.
25. Determine which of the Hopf orders in the previous problem are monogenic.
